
Data Processing Diagrams
A Modeling Technique for Privacy in Complex Data

Processing Systems

Job Doesburg1[0009−0004−4120−6977], Pascal van Gastel2[0009−0003−2705−8835],
Bernard van Gastel1[0000−0002−0974−4634], and Erik Poll1[0000−0003−4635−187X]

1 NOLAI, Radboud University, Nijmegen, The Netherlands
{job.doesburg,bernard.vangastel,erik.poll}@ru.nl

2 Avans University of Applied Sciences, Breda, The Netherlands
ppth.vangastel@avans.nl

Abstract. Modern software systems can feature complex data process-
ing, with multiple parties processing various data for different purposes,
including training or application of AI. Development of such systems
typically involves a multidisciplinary team with different viewpoints. To
effectively and efficiently design for privacy requires a multidisciplinary
and coordinated effort. We introduce Data Processing Diagrams, an ex-
tension of popular Data Flow Diagrams, with standardized notation for
fundamental forms of data processing such as data deletion, distribu-
tion, encryption and pseudonymization/anonymization. With these ex-
tensions, application of well-known privacy design strategies and tactics
in complex data processing systems can be reflected. We consider this
crucial for unambiguous communication, especially in the earliest design
phases of new systems, to quickly compare different architectures and use
the models as blueprints for development. We validate the effectiveness
of our technique as a shared language between multidisciplinary stake-
holders in the context of different co-creation projects that are part of
the Dutch National Education Lab AI (NOLAI).

Keywords: Data Flow Diagrams · Privacy Design · Privacy Modeling

1 Introduction

Modern software systems can feature complex data processing, with multiple par-
ties processing various data for different purposes, including training or applica-
tion of AI. Development of such complex systems typically involves a multidisci-
plinary team (e.g. development, engineering, legal, governance, ethics, business)
with various backgrounds, viewpoints and concerns [9,10]. Since many privacy
features can only be effectively realized by a combination of technical, physical,
organizational or legal measures, there can be important interactions between
the different disciplines. Currently, however, these stakeholders often work in
isolation [14]. This makes designing and communicating about such complex
systems challenging: there can be misconceptions, inconsistencies or (at best)

2 J. Doesburg et al.

simply inefficiency. Modern (i.e. agile) system development methods, or even
modern design methods like participatory design, co-design or co-creation [11],
and the intangible nature of software only amplify this. To prevent this requires
a simple, standardized, shared language between all stakeholders that can be
used from early in the design process and onward.

While Data Flow Diagrams (DFDs) are the de facto standard for modeling
data processing systems, they lack standardized notation for specific fundamen-
tal forms of data processing, such as data deletion, distribution, encryption3

(e.g. end-to-end encryption, homomorphic encryption and encryption at rest)
and anonymization/pseudonymization. We argue that these concepts are so fun-
damental to privacy and (consequently) have so many multidisciplinary interac-
tions (i.e. they are relevant not only to technical stakeholders), that standardized
notation is required to effectively use these diagrams as a shared language be-
tween multidisciplinary stakeholders.

We therefore introduce an extension of DFDs, called Data Processing Di-
agrams (DPDs), that give a more complete overview of data processing in a
system, focussed on privacy, while maintaining a high abstraction level. Specifi-
cally, we aim to express well-known privacy design strategies [6] and tactics [3]
in our models. We also provide relatively simple (informal) definitions for iden-
tifiability, linkability and pseudonymity to characterize data, that are aimed to
be understandable by different stakeholders.

Based on the DPD of a system, specific high-level, fundamental system prop-
erties can easily be derived, such as which components (or subsystems, or as we
will more generally prefer, contexts) could get access to which data (i.e. infor-
mation flow analysis between systems). As such, a quick privacy assessment of
a (proposed) system architecture can be made, comparing different architec-
tures. This can be done completely model-based using only the information in
the DPD and without additional background information about specific compo-
nents. While this quick analysis is in no way an alternative to exhaustive threat
modeling using popular frameworks such as LINDDUN [4,16] or STRIDE [13,7],
we consider this especially useful during the design of new systems when models
are used as blueprints and no concrete system details are yet decided.

We consider our models to function as an effective shared language between
multidisciplinary (not just technical) stakeholders to unambiguously communi-
cate about the most important features of a complex system’s data processing
architecture. We validate our modeling technique in the context of NOLAI, the
Dutch National Education Lab for Artificial Intelligence, by modeling seven co-
creation projects using input from various stakeholders, of which we present a
concrete example in section 8.

1.1 Complex data processing systems

We consider our modeling technique to be usable for what we will call complex
data processing systems, similar to complex systems in other fields of science. The
3 DFDs typically only consider point-to-point encrypted data flows between two com-

ponents (encryption in transit), but not encryption across multiple components.

Data Processing Diagrams 3

primary goal of complex data processing systems is to process (e.g. collect, store,
transform, combine, aggregate, exchange) either personal data about multiple
data subjects, or otherwise sensitive non-personal data.

The complexity lies in that various actors (e.g. legal entities) are involved
in the system (including, for example, cloud service providers), processing dif-
ferent data for diverse types of functional purposes, in multiple more-or-less au-
tonomous subsystems, possibly with multiple distributed instances of them. For
example, data may be used for (1) the basic operation of an application within
an organization, (2) centralized training of an AI model, based on data from
multiple organizations and (3) validating the effectiveness of the application.

More generally, data processing takes place in a variety of different (types
of) contexts, such as legal, physical, organizational, or functional-purpose con-
texts. Different stakeholders are typically interested in different types of con-
texts. For all these different contexts, different policies for data protection may
be required. As a result, systems may deploy specific Privacy Enhancing Tech-
nologies (PETs), including different forms of encryption, pseudonymization or
anonymization, resulting in data with different degrees of identifiability, linkabil-
ity or pseudonymity. This makes analyzing the privacy and security properties
of such systems challenging.

1.2 Related work

Our DPDs extend popular DFDs [5], that, are also used in popular (techni-
cal) threat modeling frameworks such as LINDDUN [4,16] and STRIDE [13,7].
Because of this, our DPDs can directly serve as input for analysis with these
frameworks, only providing more information.

During threat modeling using these frameworks, all DFD components and
possible threats to them are systematically identified and assessed. This, how-
ever, requires background knowledge about components that may not be avail-
able from just the DFD itself. For some types of threats, this can be very fun-
damental. For example, there is a fundamental difference in privacy risk assess-
ment between a regular data store, and one that stores encrypted data. In a
DFD, however, they are displayed as the same component. Our DPDs are able
to distinguish these fundamental differences.

We consider this especially useful during early system design, when details
about the underlying components are not yet known and the model is used as a
blueprint to describe which system architecture should be developed. Our DPDs
allow for a fully model-based architectural risk assessment. comparing different
models, instead of threat modeling where the model (i.e. a DFD) only guides
the process but cannot replace knowledge of a concrete system.

Some other extensions to DFDs have been proposed to incorporate specific
notions of privacy. PA-DFDs [1], for example, extend DFDs with purpose labels
to describe the purpose for processing data, aiming to model purpose limitation.
Sion et al. [14] proposed further DFD extensions for legal concepts and abstrac-
tions. While those extensions serve their own specific (analytical) purpose (and
could be used in combination with our extensions), they are not able to display

4 J. Doesburg et al.

the fundamental forms of data processing required to reflect well-known privacy
design strategies (see section 4) in early system design.

2 Background

Our modeling technique extends well-known Data Flow Diagrams (DFDs) [5],
consisting of directed graphs of processes, data stores and external entities, with
data flows between them. While many grammar rules can be defined for these
diagrams [8,12,2], we conveniently consider the following informal rules:

– External entities are sources or destinations of data and are further not
in scope of the system.

– Processes do not store data (i.e. for any time longer than the lifetime of
the processing itself).

– Data stores do not transform data.
– Any data flow has a process or external entity as either its input or output.

The three main components of a DFD precisely capture all three states of
data: data at rest (data stores), data in use (processes) and data in transit
(data flows). This makes data processing tangible: at the lowest abstraction
level, it should be possible to physically pinpoint exactly where each component
stores, processes, or transfers data. This results in practical completeness of
our models at the lowest abstraction level. Notably, DFDs are also technology-
agnostic: they can be used to model both digital data processing by software,
but also non-digital or manual processes, which is important for a holistic view
of data processing that is required for valid (sound) analysis.

DFDs can be made at different abstraction levels, with the highest abstrac-
tion level displaying the whole system as a single process and only displaying the
external entities the system interacts with (sometimes called a context diagram).
Every process (and arguably also every data store) can be unfolded into mul-
tiple sub-processes and data stores, with flows between them.4 This refinement
is crucial for iterative design and communication with different stakeholders,
where certain (high-risk) components can be unfolded and collapsed depending
on every stakeholder’s concerns and background knowledge.

3 Data properties in DPDs

While only modeling the interaction between different components in a system
itself can already be interesting for some stakeholders, this does not exactly
describe what data is being processed. In order to fully describe this and assess
risks, one must describe the exact contents of each data flow as the inputs and
outputs of each component. On many abstraction levels, however, this may not
be feasible nor desirable. This is especially the case during system design, when

4 External entities cannot be refined, as their internals are by definition out of scope.

Data Processing Diagrams 5

only a high-level model is available. Instead, it could be useful to focus on specific
properties of data and display these properties using special symbols.

The exact properties to consider can differ per use case and involved stake-
holders, depending on what properties we consider to have inter-stakeholder in-
teractions and be interesting for further analysis, but may often include identifia-
bility and linkability, especially when applying pseudonymization, anonymization
or other PETs in the system, since they have consequences for multiple types of
stakeholders. These properties are also fundamental to LINDDUN’s main threat
types [4]. For more specific use cases, other properties like repudiability (if non-
repudiation is a desired system property) may also be interesting, or even very
domain-specific properties like the nationality of data subjects5. Apart from
that, it can be useful to describe data with a general category (such as medical,
financial or generally sensitive). As a first step in the modeling process, the
relevant data properties between all stakeholders should be established.

3.1 Identifiability, linkability and pseudonyms

We specifically propose some practical, relatively simple definitions for identifi-
ability and linkability (with corresponding graphical representations), because
of their interplay and since they are fundamental to privacy and affect almost
all viewpoints in some way.

It is hard to precisely define the identifiability of data. While some data may
be non-identifiable to most, it could be identifiable to others that have the ability
to link data with other identifiable data, making the data indirectly identifiable
ultimately. The concepts of identifiability and linkability are thus closely related.

We also discuss pseudonyms as a special form of linkability and as a sim-
ple yet powerful PET without irreversible loss of data utility. By properly us-
ing pseudonymization, namely, one can enforce that different pseudonymous
(sub)sets of data cannot be recombined even if one or more parties or com-
ponents in the system are compromised.

Existing (e.g. mathematical) definitions for these concepts are more formal
and strict, but are consequently difficult to understand for many (non-technical)
stakeholders and less suited to characterize data flows in a larger system. We
thus seek for a compromise between expressiveness, correctness and simplicity.

Definition 1 (Identifiability). The extent to which data identifies a natural
person. We distinguish:

directly identifiable: data identifies a natural person directly, based on
publicly available knowledge
indirectly identifiable: data identifies a natural person, but requires some
non-public knowledge outside the system
de-identified: data does not contain any identifiers6
non-personal: data does not relate to persons at all

5 For example, when dealing with various national data processing regulations.
6 Some may falsely refer to this as ‘anonymous’ data. Truly anonymous data is addi-

tionally unlinkable, or even has any distinguishable statistical features removed.

6 J. Doesburg et al.

Fig. 1. Example of identifiability annotations.

Definition 2 (Linkability). The extent to which data can be linked to other
data based on an equality or known correlation. We distinguish:

universally linkable: high-entropy data that is considered to have univer-
sally unique attributes (e.g. biometrics, MAC address)
locally linkable: limited uniqueness only within the local context (e.g. ses-
sion IDs or data with random noise)
unlinkable: non-unique data that is thus inherently unlinkable

Definition 3 (Pseudonymity). A special form of local linkability without di-
rect identifiability, where local linkability is introduced through a dedicated at-
tribute. Depending on whether data is also indirectly identifiable, we distinguish:

strict pseudonymous: data is pseudonymous but further de-identified
soft pseudonymous: data is both pseudonymous and indirectly identifiable
(based on other knowledge than the pseudonym)

Under these definitions, identifiability (either direct or indirect) implies
universal linkability, but linkability does not imply identifiability. De-
identified but linkable data, this way, can become (either directly or indirectly)
identifiable after linking with other (directly or indirectly) identifiable data.

All definitions are relative to some extent and require assumptions on other
publicly available data outside the system. For example, DNA samples are ob-
viously unique and would identify a data subject in that sense. However, if we
do not assume DNA samples to be publicly available information (which is gen-
erally the case), we will not classify a DNA sample as directly identifiable, but
rather universally linkable and indirectly identifiable, or even de-identified if we
consider DNA samples to not be available to any party at all.

The threshold for all definitions can be subjective, too. In case the combi-
nation of postal code and birth year does not relate to a single natural person,
but to two or three, one may or may not consider this data identifiable, depend-
ing on the use case. During modeling, stakeholders should agree on reasonable
assumptions on these matters.

3.2 Implicit data

When characterizing data flows, it is crucial to also consider implicit (meta)data,
especially when talking about identifiability and linkability. A person’s first

Data Processing Diagrams 7

name, for example, can hardly be considered identifiable in a global data set,
but within a data set of employees of a specific department it most definitely can
be! In this case, the department of employment is implicit data, that should be
derived from the local context of the processing. Similarly, any data originating
from a specific known personal device can be considered linkable to that device
and perhaps identifiable. A specific example is real-time data, where the times-
tamp of interaction could be considered a linkable or even identifiable, implicit
attribute, for which we propose special annotation ().

4 Privacy design strategies

In 2014, Hoepman published an overview of eight privacy design strategies [6],
with various underlying privacy design tactics [3], based on a large literature
study. They are considered to form a complete overview of (high-level) ap-
proaches to privacy-friendly data processing that can categorize PETs. Specifi-
cally, Hoepman distinguishes four data-related and four process-related strate-
gies, with the first category focussing on the actual system architecture and the
latter category on more peripheral procedures for governance and compliance.
In this section, we show the DFD extensions required to distinguish the four
data-related strategies and underlying tactics.

From the in total four data-related strategies, Hoepman identifies two strate-
gies (Separate and Hide) to limit the chance of “privacy violations” in a system,
and two (Minimize and Abstract) that limit the impact of such violations [6].
Orthogonally, two strategies (Hide and Abstract) affect the actual data being
processed itself, and two strategies (Separate and Minimize) that affect the
way the processing of data is organized.

Change infrastructure Change data
Reduce impact Minimize Abstract
Reduce chance Separate Hide

Minimize The Minimize strategy simply entails to process only the data that
is strictly necessary for the purpose. This can mostly (for the Select, Exclude
and Strip tactics) be expressed in our models by annotating the data flows
between components with data properties, describing what kind of data is being
processed and resulting in fewer data being processed.

For the Destroy tactic, deleting data from a data store, however, we in-
troduce a new (complemental) type of data flow, that deletes data from a data
store (see Figure 2)7. As a result of making data deletion explicit, it is possible to
highlight components where data is stored but never deleted, possibly resulting
in orphaned data.
7 Data deletion flows only work towards a data store!

8 J. Doesburg et al.

Fig. 2. Notation for data deletion.

Abstract The Abstract strategy, consisting of the Summarize and Group
tactic, can also be expressed in our models by annotating the data flows with
data properties, describing exactly what kind of data is being processed, with
data being transformed to be less sensitive, identifiable or linkable.

Separate The Separate strategy aims to not process (or store) data at a
single place, but split it over different components, thus reducing the impact in
case of compromise (“violation”) of one of them. This concerns two tactics, Dis-
tribute and Isolate. Isolation is reflected by having multiple different types
of components processing different types of data, which can easily be reflected
in our models. Distribution, on the other hand, considers the usage of multi-
ple instances of the same type of (sub)system or component for different data
subjects. The existence of such components is also typically a characteristic of
complex data processing systems, as defined in subsection 1.1.

In a classical DFD, every store, process or external entity typically represents
a different type of component. Any distribution of instances is left implicit or
must be specified in natural text, which could leave room for ambiguities. We
therefore introduce notation to display multiple instances of the same component
type that are separated (Figure 3) to a certain extent. Related to the distributed
components, refinement (unfolding) might result in a subset of components that
together functions as an independent subsystem.

Fig. 3. Notation for (n) distributed components.

Data Processing Diagrams 9

For each distributed component or subsystem, the variable or level of distri-
bution should be specified. This could, for example, be the data subject-level or
organization-level, with one instance of the subsystem for every data subject or
organization respectively. This distribution can also be nested.

Hide Finally, the Hide strategy consists of the Restrict, Mix, Dissociate
and Obfuscate tactics. On an architectural level, the Restrict tactic considers
employing an access control process, which as such can directly be reflected in our
model, but does not influence other architectural features of data processing in a
system. Similarly, the Mix and Dissociate tactics are also displayed by specific
centralized processes resulting in data with limited linkability or identifiability,
or eliminating (real-time) linkable data flows. Cryptographic technologies such
as differential privacy also fall under these tactics.

The Obfuscate tactic, however, is observed in cryptographic processes, en-
crypting the data and hiding it across part of the processing, towards those
unable to decrypt it.

In regular DFDs, data flows are point-to-point between two components
(stores, processes or external entities). When encryption is applied, this encryp-
tion is typically considered to be point-to-point too, and not end-to-end (across
multiple components).

When data is end-to-end encrypted while flowing through multiple compo-
nents, there are different ways of modeling this. Either, the DFD only describes
the high-level data flow between the two endpoints and ignores the existence of
all underlying infrastructure, or, more commonly, we ignore the fact that end-
to-end encryption is applied and only keep it in the back of our mind when using
the DFD for further analysis (perhaps by including some ad-hoc annotations).
Finally, one could include explicit encryption, decryption, and key management
processes in the model. This, however, would require a lower abstraction level
and making the model more complex to analyze.

Therefore, we introduce abbreviated notation for end-to-end encrypted data
flows across multiple components (see Figure 4). Across a data store, this is
known as ‘encryption at rest’. Across a process, transforming the data while
being encrypted, this is known as ‘homomorphic encryption’. Finally, we also
introduce notation for multiparty computations (MPC) as a distributed process
on encrypted data.

Notice that in the abbreviated notation, key management is ignored, since
we consider this a technical detail that is not relevant at higher abstraction
levels. For MPC, notice the slightly different notation than for (normal) simple
distributed components (see Figure 3), since for MPC the individual nodes are
not fully isolated from each other and are not autonomous. Annotations should
display to what extent the different nodes of an MPC process are separated,
or alternatively, MPC processes can be displayed in more detail as distributed
processes.

10 J. Doesburg et al.

Fig. 4. Abbreviated notation for cryptographic components.

5 Context boundaries

The STRIDE security threat modeling framework [7] introduced the concept of
trust boundaries to Data Flow Diagrams, to indicate where in a system trust
levels are changing and, for example, a different threat model must be consid-
ered. This typically considers the location of a component in the system, either
physical or logical (as part of a larger system, network, etc.). The LINDDUN
privacy threat modeling framework [16] also briefly mentions trust boundaries,
without really describing a specific meaning to them, but similar boundaries
could be considered (e.g. legal boundaries).

In complex data processing systems, as described in subsection 1.1, typically
many (and many types) of these boundaries exist, which we referred to as con-
texts. We therefore generalize the term trust boundaries to context boundaries,
where different contexts might be identified by different characteristics, includ-
ing but not limited to technical or organizational trust. Exactly which context
boundaries to consider can differ per use case, similar to which data properties
one should consider as discussed in section 3. Examples could include physical
locations, technical or logical separated units (such as different system users,
devices, or networks), legal or organizational responsible entities, or natural per-
sons being actors in or having access to components.

By specifying context boundaries, different (types of) contexts are estab-
lished, resulting in two ways of visualizing them (see Figure 5). These different
contexts could be considered as separate overlays on a single base model. Mul-
tiple distributed instances of contexts can also exist.

It is important to notice that with refinement of diagrams, unfolding or col-
lapsing (groups of) components, it is possible that at higher abstraction levels
context boundaries cannot always be exactly drawn between distinct compo-
nents. This results in rather blurry context boundaries somewhere inside a store
or process, or components being in multiple contexts (of the same type). For
some types of contexts, it is also possible that components are fully part of mul-
tiple contexts at any abstraction level (such as processing purpose or legal entity
responsible, in case of shared responsibility between multiple parties). We con-
sider this a feature of our models, indicating that more refinement is required,
or that a component requires extra attention.

Data Processing Diagrams 11

Fig. 5. Different ways to display contexts (blue) or context boundaries (red).

5.1 Alignment

As already originally mentioned for STRIDE, where data crosses a trust bound-
ary, certain mitigating measures (e.g. technical, legal) may be required. Addi-
tionally, we argue that it is exactly where different types of contexts do not align
with each other, where extra attention is required during system design.

As an example (Figure 6), the paper archives (data store) from organiza-
tion A (legal) may be located in the building of organization B (physical). The
physical and legal context boundaries do not align. It may thus be possible for
organization B to physically get access to the stored data from organization A
before process 2 (perhaps, anonymization) has been performed, which perhaps
should be resolved by contractual agreements forbidding it, or physical or tech-
nical measures, such as placing it in a vault or applying encryption. Here, the
interplay with encrypted data flows as discussed in section 4 becomes appar-
ent, since an end-to-end encrypted data flow effectively may not pass a context
boundary while a regular flow does.

Inspecting components where context boundaries do not align or are not
clearly defined, especially when processing sensitive or identifiable information,
allows for prioritized (and thus, more efficient) refinement of a DFD to lower
abstraction levels during system design.

Fig. 6. Two types of context boundaries that are not aligned.

12 J. Doesburg et al.

6 System properties

Based on our DPDs, specific system properties can be derived, using basic graph
theory. This can be useful to make specific (privacy) claims about forms of data
processing that does not8 (or cannot, because data is not linkable) take place in
the system. For example, one could make statements about:

– Which components or contexts process which types of data (i.e. where data
flows from one context to another)

– The existence of data stores where data is not being deleted
– To which degree specific types of data are processed centrally or decentrally
– Components that do not align with different context boundaries
– Whether different data could be combined within a context, based on link-

ability of the data

Special attention could go out to system properties assuming compromise
of one or more contexts, making sure that specific properties still hold after
compromise by considering the transitive closure of the graph.

Based on this analysis, high-risk components could be identified, which could
then be further refined, until so many details are described that the residual risk
either can be accepted, or the risk is mitigated in another way. Ongoing research
by the authors focuses on more formal methods for analysis, risk assessment and
model refinement during system design using these data processing diagrams.

7 Evaluation

Our modeling technique is being used in the Dutch National Education Lab AI
(NOLAI). At NOLAI, every year, about 10 new three-year co-creation projects
start (e3M per year), aiming to combine academic research towards AI in educa-
tion with software product development. Currently, 17 projects are running, and
another 80 are expected for the coming years. In these projects different stake-
holders from education, industry, and academia are involved. Many projects
feature a scientific experiment that builds on existing platforms, making the
responsibilities and risks hard to manage. As such, these projects are typical ex-
amples of complex data processing systems. To organize data processing respon-
sibly in all these different contexts, various measures are implemented, including
pseudonymization and different forms of encryption, both in transit and at rest.

The authors have modeled eight of these co-creation projects, mostly in the
early stages of the development process. This was done in collaboration with var-
ious stakeholders, including researchers (in different academic fields), co-creation
managers, legal experts, software engineers and ethicists.

While not all stakeholders, especially not those without a technical back-
ground, were able to actively create these models from scratch, all were able
8 We can only make negative claims, since components might be unavailable, poten-

tially blocking any data processing.

Data Processing Diagrams 13

to understand the models when creating them together with a more techni-
cal expert. Moreover, after working with them for a while and with help of
templates and examples, most were able to create and interpret simple models
independently. Meanwhile, for the more technical stakeholders, the models were
unambiguous and contained enough information to perform some high-level risk
analysis and compare different designs based on their privacy properties.

More importantly, authors have experienced that the process of creating a
DPD required stakeholders to critically think about data processing and de-
fine scopes. Making the models identified unclarities or ambiguities and forced
stakeholders to address those, early in the process. More than once, the modeling
process resulted in different versions of the system between which a choice had
to be made, of which many stakeholders were previously unaware. As such, the
models functioned as a starting point for discussion between stakeholders, and
effectively served as a shared language.

Anecdotally, for several projects, incompatibilities were discovered during
modeling, for example where processed anonymized data had to be returned to
the original data subjects, or where no procedures were designed to transfer data
between two stores (which, in practice, resulted in people using insecure email to
transfer sensitive data). The simple process of creating these models, highlighted
these blind spots.

In future research, authors plan to further incorporate the modeling tech-
nique into a structured design methodology, and validate the effectiveness of the
methodology over a period of multiple years of development of a system.

8 Example

As a concrete example, we present NOLAI’s VIAT (Video Interaction Analysis
Tool) project. In the VIAT project, software is developed to analyze in-classroom
video footage for teacher’s training purposes, such as detecting moments that
a teacher answers or ignores a student’s question. Data processing includes the
recording, storage and playback of videos, as well as analysis (creating reports)
using AI models. Additionally, to develop the tool, selected recorded videos are
annotated and used to train these models. VIAT is tested and developed in pilots
at primary schools, and the effectiveness is studied using interviews and analysis
of additional data sources by researchers from NOLAI, potentially in multiple
independent studies.

Different (legal) organizations are involved in the processing, including sev-
eral schools, commercial parties (for both the recording platform and AI anal-
ysis), cloud service providers and a research institute. As such, data processing
takes place in different contexts. In this example, we will focus on legal contexts.

There are several desired privacy features for these contexts. For example,
scientific data analysis may only use pseudonymous data. Also, AI model training
should not receive identifiable data. Preferably, recorded videos are not accessible
to anyone except the school. Finally, the commercial party may not receive the
data collected in the scientific context.

14 J. Doesburg et al.

Fig. 7. DPDs of two possible architectures for the VIAT project, with data identifia-
bility annotations.

(a) A strong privacy architecture, with mostly decentralized data processing at schools
(except video analysis), encrypted cloud storage per school, model training on de-
identified data, and pseudonymization for research.

(b) A weak with fully centralized data processing by the commercial party and cloud
provider, with no encrypted storage at the cloud provider, involving model training
on identifiable data and lacking pseudonymization.

Data Processing Diagrams 15

In Figure 7, we present two DPDs for two possible data processing architec-
tures for the VIAT project, where one has obviously stronger privacy guarantees
than the other (see captions). Notably, the DFDs for both architectures would
be the same, illustrating the added value of DPDs over DFDs.

9 Future work

As presented in section 6, our diagrams can be used to systematically derive
system properties based on annotations of data types and assumptions on un-
derlying components as in section 3. To derive more specific properties, more
strict mathematical definitions such as k-anonymity [15] could be considered
and algebraic rules for such properties, based on these diagrams, could be built.

When using data processing diagrams during system design, a structured for-
mal method for risk assessment can also be considered, systematically identifying
high-risk components and refining them or mitigating risks. While we did show
the completeness of our modeling technique with respect to well-known privacy
design strategies and tactics [3], choosing which tactic to apply while designing
a system, requires thought-out decisions. Future research can focus on designing
systematic methodologies to apply specific tactics and identify common privacy
design patterns and antipatterns, implementing specific measures.

A different application of our diagrams could be in the analysis of energy
consumption of (software) systems, which is, next to privacy and security, also
an important factor in implementing data processing sustainably.

Finally, it would be interesting to see to what extent Data Processing Di-
agrams, at a high abstraction level, can be used as a communication tool for
non-expert users (or data subjects) to offer transparency about data processing.

10 Conclusion

We introduced Data Processing Diagrams, a modeling technique for privacy in
complex data processing systems, based on well-known Data Flow Diagrams.
The extensions for data deletion, distribution, encryption, together with anno-
tations of identifiability, linkability and pseudonymity of data, are able to reflect
application of well-known privacy design strategies [6] and tactics [3]. The re-
sulting models allow for unambiguous communication between multidisciplinary
stakeholders (e.g. security, legal, management, ethics, development and engi-
neers) about privacy and data processing in a system, at different abstraction
levels. Moreover, specific system properties can be derived from these models.
Authors have experienced the models to be effective tools in the system develop-
ment process, helping to derive system properties and perform risk assessment
or threat modeling. In future research, our modeling technique can be further
formalized to derive more specific system properties in a systematic way, based
on more formal definitions, and perform risk assessment to effectively implement
specific design patterns for improved privacy.

16 J. Doesburg et al.

Acknowledgments. This research is performed in context of the Dutch National
Education Lab AI (NOLAI), funded by the Dutch National Growth Fund.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Alshareef, H., Tuma, K., Stucki, S., Schneider, G., Scandariato, R.: Precise analysis
of purpose limitation in data flow diagrams. In: Proceedings of the 17th Interna-
tional Conference on Availability, Reliability and Security. ARES ’22, ACM (2022).
https://doi.org/10.1145/3538969.3539010

2. Ambler, S.W.: Data Flow Diagrams (DFDs), http://www.agilemodeling.com/
artifacts/dataFlowDiagram.htm, personal webpage (2006)

3. Colesky, M., Hoepman, J.H., Hillen, C.: A critical analysis of privacy design strate-
gies. In: 2016 IEEE Security and Privacy Workshops (SPW). pp. 33–40. IEEE
(2016). https://doi.org/10.1109/SPW.2016.23

4. Deng, M., Wuyts, K., Scandariato, R., Preneel, B., Joosen, W.: A privacy threat
analysis framework: supporting the elicitation and fulfillment of privacy require-
ments. Requirements Engineering 16(1), 3–32 (2011). https://doi.org/10.1007/
s00766-010-0115-7

5. Edward Yourdon, Constantine, L.L.: Structured Design: Fundamentals of a Disci-
pline of Computer Program and Systems Design. YOURDON Press, 2 edn. (1975)

6. Hoepman, J.H.: Privacy design strategies. In: ICT Systems Security and Privacy
Protection. pp. 446–459. IFIP Advances in Information and Communication Tech-
nology, Springer (2014). https://doi.org/10.1007/978-3-642-55415-5_38

7. Howard, M., Lipner, S.: The security development lifecycle. Microsoft Press (2006)
8. Kozar, K.A.: The technique of data flow diagramming, http://spot.colorado.edu/

~kozar/DFDtechnique.html, personal webpage (1997), University of Colorado
9. Maier, M.W., Emery, D., Hilliard, R.: 5.4.3 ANSI/IEEE 1471 and systems en-

gineering. INCOSE International Symposium 12(1), 798–805 (2002). https://doi.
org/10.1002/j.2334-5837.2002.tb02541.x

10. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakehold-
ers Using Viewpoints and Perspectives. AWPC (2005)

11. Sanders, E.B.N., Stappers, P.J.: Co-creation and the new landscapes of design.
CoDesign 4(1), 5–18 (2008). https://doi.org/10.1080/15710880701875068

12. Sauter, V.: Data Flow Diagrams, http://umsl.edu/~sauter/analysis/dfd/dfd_
intro.html, personal webpage (2002), University of Missouri, St. Louis

13. Shostack, A.: Threat Modeling: Designing for Security. John Wiley & Sons (2014)
14. Sion, L., Dewitte, P., Van Landuyt, D., Wuyts, K., Emanuilov, I., Valcke, P.,

Joosen, W.: An architectural view for data protection by design. In: 2019 IEEE In-
ternational Conference on Software Architecture (ICSA). pp. 11–20. IEEE (2019).
https://doi.org/10.1109/ICSA.2019.00010

15. Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 10(5), 557–570 (2002).
https://doi.org/10.1142/S0218488502001648

16. Wuyts, K., Scandariato, R., Joosen, W.: Empirical evaluation of a privacy-focused
threat modeling methodology. Journal of Systems and Software 96, 122–138 (2014).
https://doi.org/10.1016/j.jss.2014.05.075

https://doi.org/10.1145/3538969.3539010
https://doi.org/10.1145/3538969.3539010
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
http://www.agilemodeling.com/artifacts/dataFlowDiagram.htm
https://doi.org/10.1109/SPW.2016.23
https://doi.org/10.1109/SPW.2016.23
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/s00766-010-0115-7
https://doi.org/10.1007/978-3-642-55415-5_38
https://doi.org/10.1007/978-3-642-55415-5_38
http://spot.colorado.edu/~kozar/DFDtechnique.html
http://spot.colorado.edu/~kozar/DFDtechnique.html
https://doi.org/10.1002/j.2334-5837.2002.tb02541.x
https://doi.org/10.1002/j.2334-5837.2002.tb02541.x
https://doi.org/10.1002/j.2334-5837.2002.tb02541.x
https://doi.org/10.1002/j.2334-5837.2002.tb02541.x
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1080/15710880701875068
http://umsl.edu/~sauter/analysis/dfd/dfd_intro.html
http://umsl.edu/~sauter/analysis/dfd/dfd_intro.html
https://doi.org/10.1109/ICSA.2019.00010
https://doi.org/10.1109/ICSA.2019.00010
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1016/j.jss.2014.05.075
https://doi.org/10.1016/j.jss.2014.05.075

	Data Processing Diagrams

